Enthalpic factors override the polyelectrolyte effect in the binding of EGR1 transcription factor to DNA

David C. Miklesa, Vikas Bhatb, Brett J. Schuchardta, Caleb B. McDonalda and Amjad Farooqa*

Protein–DNA interactions are highly dependent upon salt such that the binding affinity precipitously decreases with increasing salt concentration in a phenomenon termed as the polyelectrolyte effect. In this study, we provide evidence that the binding of early growth response (EGR) 1 transcription factor to DNA displays virtually zero dependence on ionic strength under physiological salt concentrations and that such feat is accomplished via favorable enthalpic contributions. Importantly, we unearth the molecular origin of such favorable enthalpy and attribute it to the ability of H382 residue to stabilize the EGR1–DNA interaction via both intermolecular hydrogen bonding and van der Waals contacts against the backdrop of salt. Consistent with this notion, the substitution of H382 residue with other amino acids faithfully restores salt-dependent binding of EGR1 to DNA in a canonical fashion. Remarkably, H382 is highly conserved across other members of the EGR family, implying that changes in bulk salt concentration are unlikely to play a significant role in modulating protein–DNA interactions central to this family of transcription factors. Taken together, our study reports the first example of a eukaryotic protein–DNA interaction capable of overriding the polyelectrolyte effect. Copyright © 2014 John Wiley & Sons, Ltd.

Keywords: Protein–DNA thermodynamics; salt tolerance; hydrogen bonding; van der Waals contacts; polyelectrolyte effect

INTRODUCTION

The charged groups in protein and DNA do not exist in isolation in water but are rather shielded with oppositely charged ions termed “counterions” so as to minimize electrostatic repulsions within their respective polarized regions. Upon association, the oppositely charged groups in protein and DNA engage in the formation of intermolecular salt bridges accompanied by the release of counterions into bulk water in a phenomenon that has come to be known as the polyelectrolyte effect (Record et al., 1976; Manning, 1978; Record et al., 1978; Record et al., 1985; Record et al., 1991; Lohman and Mascotti, 1992; Sharp et al., 1995). Given that the release of otherwise “immobilized” counterions into bulk water is concomitant with an increase in the degrees of freedom of the system, the polyelectrolyte effect generates a highly favorable entropic contribution to the free energy of binding of proteins to DNA. Because of their predominantly ionic nature, protein–DNA interactions are highly dependent upon salt such that the binding affinity precipitously decreases with increasing salt concentration (Record et al., 1976; Manning, 1978; Record et al., 1978; Record et al., 1985; Record et al., 1991; Lohman and Mascotti, 1992; Sharp et al., 1995). This is a hallmark of the polyelectrolyte effect in that increasing the concentration of bulk salt mitigates the liberation of counterions into bulk water.

Although the polyelectrolyte effect is generally believed to be the major player involved in driving protein–DNA interactions, recent studies on bacterial DNA-binding proteins such as TATA-box binding protein and DNA polymerase I challenge the generality of this school of thought (O’Brien et al., 1998; Deredge et al., 2010). On the contrary, increasing salt concentration augments rather than disrupts the binding of these bacterial proteins to DNA. Given the extreme environmental conditions that the bacteria have evolved to adapt to, the reversal of such salt effect on protein–DNA interactions is perhaps not surprising. Nonetheless, the suggestion that the polyelectrolyte effect may not be a universal phenomenon in driving protein–DNA interactions and that certain protein–DNA interactions could actually thrive under high salt concentrations provokes further experimentation. Toward this goal, we set out here to uncover the nature of thermodynamic forces driving the binding of human early growth response (EGR) 1 transcription factor, also known as Zif268, to its cognate DNA (Iwaki et al., 1990; Sukhatme, 1990; Gaslher and Sukhatme, 1995). Briefly, EGR1 is constructed on the classical TA–DB modular design, where TA is the N-terminal transactivation domain and DB is the C-terminal DNA-binding domain (Christy et al., 1988; Sukhatme, 1990; Pabo and Sauer, 1992; Gaslher and Sukhatme, 1995). Upon activation in response to extracellular stimuli—such as hormones, neurotransmitters,
and growth factors—EGR1 binds via its DB domain to the promoters of target genes containing the GCCGTTGGCG consensus motif, referred to hereinafter as the Zif268 response element (ZRE), in a sequence-dependent manner (Christy and Nathans, 1989; Pavletich and Pabo, 1991; Hamilton et al., 1998). The resulting EGR1–DNA interaction facilitates the TA domain to recruit a diverse array of transcriptional coregulators to cognate DNA promoters and, in doing so, plays a key role in modulating the transcriptional machinery. Importantly, EGR1 couples extracellular stimuli to and, in doing so, plays a key role in modulating the transcriptional array of transcriptional coregulators to cognate DNA promoters.

EXPERIMENTAL PROCEDURES

Protein preparation

The wildtype DB (DB_WT) domain (residues 331–430) of human EGR1 was cloned into pET30 bacterial expression vector with an N-terminal His-tag using Novagen ligation-independent cloning technology as described previously (Mikles et al., 2013). The single mutants of the DB domain of EGR1 containing H382A (DB_H382A), H382K (DB_H382K), H382R (DB_H382R), and H382E (DB_H382E) substitutions as well as the double mutant containing the E354H/E410H (DB_HH) substitutions were generated through de novo DNA synthesis (GenScript Corporation) and subsequently cloned into pET30 bacterial expression as described for the DB_WT domain. All recombinant proteins were subsequently expressed in Escherichia coli BL21(DE3) bacterial strain (Invitrogen) and purified on a Ni-NTA affinity column followed by size-exclusion chromatography as described previously (Mikles et al., 2013). It should be noted here that the BL21(DE3) strain is optimized for high-yield expression of recombinant proteins in bacteria. Final yields were typically between 5 and 10 mg protein of apparent homogeneity per liter of bacterial culture. Protein concentration was spectrophotometrically determined on the basis of extinction coefficients calculated using the online software ProtParam at ExPasy Server.

DNA synthesis

15-mer DNA oligos containing the ZRE consensus site (GCCGTTGGCG) were commercially obtained from Sigma Genosys. The complete nucleotide sequence of the sense and antisense oligos constituting the ZRE duplex is shown below:

\[5' - \text{ataGCCGTTGGCGTt} - 3' \]
\[3' - \text{tatCGCACCCGCa} - 5' \]

Oligo concentrations were determined spectrophotometrically on the basis of their extinction coefficients derived from their nucleotide sequences using the online software OligoAnalyzer 3.1. Equimolar amounts of sense and antisense oligos were mixed together and heated at 95 °C for 10 min and then allowed to cool to room temperature to obtain double-stranded DNA annealed oligos (ZRE duplex).

Isothermal titration calorimetry measurements

Isothermal titration calorimetry (ITC) experiments were performed on a TA Nano-ITC instrument. Briefly, wildtype and mutant DB domains of EGR1 and the ZRE duplex were dialyzed in 50 mM sodium phosphate and 5 mM β-mercaptoethanol containing varying concentrations of sodium chloride (NaCl), potassium chloride (KCl), or sodium acetate (NaAc) at pH 7.0. All experiments were initiated by injecting 25 × 10⁻¹⁰ M aliquots of 100–200 μM of ZRE duplex from the syringe into the calorimetric cell containing 0.95 ml of 10–20 μM of the DB domain solution at 25 °C. The change in thermal power as a function of each injection was automatically recorded using the integrated NanoAnalyze software. The raw data were further integrated to yield binding isotherms of heat release per injection as a function of molar ratio of ZRE duplex to DB domains. The heats of mixing and dilution were subtracted from the heat of binding per injection by carrying out a control experiment in which the same buffer in the calorimetric cell was titrated against the ZRE duplex in an identical manner. To determine the equilibrium constant \(K_d \) and the enthalpy change \(\Delta H \) associated with the binding of DB domains to DNA, the binding isotherms were iteratively fit to a built-in one-site model by nonlinear least squares regression analysis using the integrated NanoAnalyze software as described previously (Wisman et al., 1989; Mikles et al., 2013). The free energy change \(\Delta G \) upon binding was calculated from the relationship:

\[\Delta G = RT \ln K_d \]

where \(R \) is the universal molar gas constant (1.99 cal/mol/K) and \(T \) is the absolute temperature (298 K). The entropic contribution \((T\Delta S) \) to the free energy of binding was calculated from the relationship:

\[T\Delta S = \Delta H - \Delta G \]

where \(\Delta H \) and \(\Delta G \) are as defined above.

Molecular modeling

Molecular modeling was employed to build a structural model of the DB domain of EGR1 in complex with the 15-mer ZRE duplex using the corresponding crystal structure determined by Pavletich and Pabo (1991) in the MODELLER software (Martí-Renom et al., 2000) as described earlier (Mikles et al., 2013). A total of 100 structural models were calculated and the structure with the lowest energy, as judged by the MODELLER Objective Function, was selected for further analysis. The structural model was rendered using RIBBONS (Carson, 1991).
RESULTS AND DISCUSSION

Binding of EGR1 to DNA largely tolerates the effect of salt

To investigate the effect of salt on EGR1–DNA interaction, we analyzed the binding of the DB domain of EGR1 to a 15-mer ZRE duplex containing the GCGTGGGCG consensus motif as a function of various kosmotropic salts using ITC (Figure 1 and Tables 1–3). Our data reveal that the binding constant (K_d) is independent of NaCl concentration up to around 300 mM and then drops off exponentially beyond this point (Figure 2 and Table 1). Remarkably, this behavior is also exquisitely reproduced in the presence of KCl (Figure 2 and Table 2), in which the sodium cation is replaced with potassium while keeping the chloride anion constant between these two salts. On the other hand, when the chloride anion is substituted with acetate while keeping the sodium cation constant, the lack of dependence of binding on salt is observed to be even more dramatic (Figure 2 and Table 3). Thus, although the binding of the DB domain to DNA appears to be independent of NaCl and KCl salts up to about 300 mM followed by an exponential decrease resulting in the reduction of binding by nearly 40-fold over the concentration range of 0–500 mM, it displays a linear dependence on NaAc across the entire concentration range with an overall decrease in affinity of less than 10-fold.

This salient observation strongly implies that the binding of the DB domain of EGR1 to DNA not only displays much higher tolerance to NaAc compared with chloride salts but also partially restores its salt dependence in a manner akin to classical protein–DNA interactions. How could that be so?

According to the Hofmeister series (Baldwin, 1996; Cacace et al., 1997; Zhang and Cremer, 2006), acetate harbors a relatively higher degree of kosmotropic character than chloride. In the context of protein structure and stability, this implies that acetate bears higher potential than chloride to drive intermolecular interactions by virtue of its ability to cause water molecules to interact with apolar surfaces on proteins more favorably so as to become more “ordered.” Upon binding to DNA, the release of such “ordered” water molecules from apolar surfaces would be highly entropically favorable such that it could suppress the effect of increasing salt concentration in the bulk water. The greater the kosmotropic nature of a salt, the greater suppressing power it is likely to exert. Accordingly, the ability of EGR1–DNA interaction to display higher tolerance to NaAc could be ascribed to its higher kosmotropic character relative to NaCl and KCl. In short, our data presented above strongly argue that the binding of EGR1 to DNA is independent of physiological concentrations of salt. This finding is thus in a marked contrast to the more

<table>
<thead>
<tr>
<th>[NaCl] (mM)</th>
<th>K_d (nM)</th>
<th>ΔH (kcal mol$^{-1}$)</th>
<th>$T\Delta S$ (kcal mol$^{-1}$)</th>
<th>ΔG (kcal mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>271 ± 35</td>
<td>−26.70 ± 0.61</td>
<td>−17.72 ± 0.69</td>
<td>−8.97 ± 0.08</td>
</tr>
<tr>
<td>100</td>
<td>314 ± 39</td>
<td>−19.01 ± 0.17</td>
<td>−10.13 ± 0.24</td>
<td>−8.88 ± 0.07</td>
</tr>
<tr>
<td>200</td>
<td>266 ± 66</td>
<td>−16.32 ± 0.16</td>
<td>−7.33 ± 0.31</td>
<td>−8.99 ± 0.15</td>
</tr>
<tr>
<td>300</td>
<td>421 ± 49</td>
<td>−14.27 ± 0.15</td>
<td>−5.57 ± 0.22</td>
<td>−8.71 ± 0.07</td>
</tr>
<tr>
<td>400</td>
<td>2441 ± 325</td>
<td>−14.20 ± 0.72</td>
<td>−6.54 ± 0.64</td>
<td>−7.67 ± 0.08</td>
</tr>
<tr>
<td>500</td>
<td>10119 ± 1228</td>
<td>−12.99 ± 0.37</td>
<td>−6.17 ± 0.44</td>
<td>−6.82 ± 0.07</td>
</tr>
</tbody>
</table>

The binding stoichiometries to the fits agreed to within ±10%. Errors were calculated from at least three independent measurements. All errors are given to 1 standard deviation.

Figure 1. Representative ITC isotherms for the binding of ZRE duplex to the DB_WT domain of EGR1 at NaCl concentrations of (a) 0 mM, (b) 200 mM, and (c) 500 mM. The upper panels show raw ITC data expressed as change in thermal power with respect to time over the period of titration. In the lower panels, change in molar heat is expressed as a function of molar ratio of ZRE duplex to DB domain. The red solid lines in the lower panels show the fit of data to a one-site binding model using the integrated NanoAnalyze software as described previously (Wiseman et al., 1989; Mikles et al., 2013).
The binding stoichiometries to the fits agreed to within ±10%. Errors were calculated from at least three independent measurements. All errors are given to 1 standard deviation.

Table 2. Thermodynamic parameters for the binding of wildtype DB domain (DB_WT) of EGR1 to DNA at pH 7 and 25 °C under various KCl concentrations

<table>
<thead>
<tr>
<th>[KCl] (mM)</th>
<th>K_d (nM)</th>
<th>ΔH (kcal mol$^{-1}$)</th>
<th>$T\Delta S$ (kcal mol$^{-1}$)</th>
<th>ΔG (kcal mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>271 ± 35</td>
<td>$-26.70 ± 0.61$</td>
<td>$-17.72 ± 0.69$</td>
<td>$-8.97 ± 0.08$</td>
</tr>
<tr>
<td>100</td>
<td>345 ± 47</td>
<td>$-17.31 ± 0.75$</td>
<td>$-8.48 ± 0.67$</td>
<td>$-8.83 ± 0.08$</td>
</tr>
<tr>
<td>200</td>
<td>324 ± 50</td>
<td>$-11.33 ± 0.25$</td>
<td>$-2.47 ± 0.15$</td>
<td>$-8.87 ± 0.09$</td>
</tr>
<tr>
<td>300</td>
<td>758 ± 265</td>
<td>$-6.78 ± 0.26$</td>
<td>$+1.60 ± 0.47$</td>
<td>$-8.37 ± 0.21$</td>
</tr>
<tr>
<td>400</td>
<td>2070 ± 251</td>
<td>$-5.95 ± 0.55$</td>
<td>$+1.81 ± 0.48$</td>
<td>$-7.76 ± 0.07$</td>
</tr>
<tr>
<td>500</td>
<td>10534 ± 784</td>
<td>$-4.45 ± 0.23$</td>
<td>$+2.35 ± 0.18$</td>
<td>$-6.80 ± 0.04$</td>
</tr>
</tbody>
</table>

ubiquitous polyelectrolyte effect that is in general believed to
drive protein–DNA interactions (Record et al., 1976; Manning,
1978; Record et al., 1978; Record et al., 1985; Record et al., 1991;
Lohman and Mascotti, 1992; Sharp et al., 1995). In this classical
model, the affinity of protein–DNA interactions rapidly drops with
increasing salt concentration. Notably, such reduction in binding
affinity is attributed to the decrease in favorable entropy of coun-
terion release from DNA as the bulk concentration of salt is
increased (Ha et al., 1992; Sharp et al., 1995; Lohman et al., 1996).
In the case of EGR1–DNA interaction, such loss of entropy as a
result of counterion release under physiological concentrations of
salt would be compensated either by an equal gain of favorable
entropy because of the release of ordered water from apolar
surfaces into bulk phase and/or a compensatory gain of favorable
enthalpy because of the formation of nonionic interactions such as
hydrogen bonding and van der Waals contacts.

Table 3. Thermodynamic parameters for the binding of wildtype DB domain (DB_WT) of EGR1 to DNA at pH 7 and 25 °C under various NaAc concentrations

<table>
<thead>
<tr>
<th>[NaAc] (mM)</th>
<th>K_d (nM)</th>
<th>ΔH (kcal mol$^{-1}$)</th>
<th>$T\Delta S$ (kcal mol$^{-1}$)</th>
<th>ΔG (kcal mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>271 ± 35</td>
<td>$-26.70 ± 0.61$</td>
<td>$-17.72 ± 0.69$</td>
<td>$-8.97 ± 0.08$</td>
</tr>
<tr>
<td>100</td>
<td>755 ± 68</td>
<td>$-14.94 ± 0.69$</td>
<td>$-6.58 ± 0.75$</td>
<td>$-8.36 ± 0.06$</td>
</tr>
<tr>
<td>200</td>
<td>1026 ± 132</td>
<td>$-12.99 ± 0.53$</td>
<td>$-4.81 ± 0.61$</td>
<td>$-8.18 ± 0.08$</td>
</tr>
<tr>
<td>300</td>
<td>1330 ± 218</td>
<td>$-9.09 ± 0.21$</td>
<td>$-1.06 ± 0.11$</td>
<td>$-8.03 ± 0.10$</td>
</tr>
<tr>
<td>400</td>
<td>1772 ± 308</td>
<td>$-6.58 ± 0.31$</td>
<td>$+1.28 ± 0.41$</td>
<td>$-7.86 ± 0.10$</td>
</tr>
<tr>
<td>500</td>
<td>2174 ± 357</td>
<td>$-3.51 ± 0.19$</td>
<td>$+4.22 ± 0.09$</td>
<td>$-7.74 ± 0.10$</td>
</tr>
</tbody>
</table>

The binding stoichiometries to the fits agreed to within ±10%. Errors were calculated from at least three independent measurements. All errors are given to 1 standard deviation.

Thus, the overall effect of such ΔH–$T\Delta S$ compensation results
in little or no change in ΔG up to about 300 mM of chloride salts.
Remarkably, after this point, the unfavorable enthalpic contribu-
tions begin to considerably outweigh the favorable entropic
contributions such that this breakdown in ΔH–$T\Delta S$ compensa-
tion after about 300 mM is directly reflected in the loss of free
energy of EGR1–DNA interaction. A similar but perhaps a
somewhat more subtle trend is also observed in the case of
increasing concentration of NaAc.

In sum, the decrease in the binding affinity of EGR1 to DNA
under high concentrations of salt is overall because of the loss
of favorable enthalpic contributions as opposed to entropic.
In retrospect, this strongly implies that the thermodynamic basis
of the ability of EGR1–DNA interaction to resist the effect of
physiological concentrations of salt must resides in underlying
enthalpic factors such as hydrogen bonding and van der Waals
contacts in lieu of entropic forces.

Favorable enthalpic factors account for the salt tolerance of
the binding of EGR1 to DNA

To understand how an interplay between underlying thermody-
namic forces confers upon EGR1–DNA interaction the ability to
overide the polyelectrolyte effect, we next analyzed the depen-
dence of enthalpic (ΔH) and entropic ($T\Delta S$) contributions to
the free energy (ΔG) of binding as a function of salt concentration
(Figure 3). Our analysis shows that increasing salt concentration
strongly correlates with an increase in the entropic contribution
to the free energy of binding of EGR1 to DNA (Figures 3a–3c). In
sharp contrast, this favorable entropic contribution is exquisitely
mirrored by an equal but an unfavorable decrease in enthalpic
contribution as a function of concentration of all three salts.

Physical basis of the salt independence of EGR1–DNA
interaction lies in the formation of intermolecular
hydrogen bonding and van der Waals contacts

In order to elucidate the physical basis of the favorable enthalpy
driving the binding of EGR1 to DNA, we next generated a struc-
tural model of the DB domain in complex with the ZRE duplex on
the basis of known crystal structure determined by Pavletich and
Pabo (1991). As shown in Figure 4, the EGR1–DNA interaction is
driven by the binding of the DB domain as a monomer to the
major groove within the ZRE duplex. Notably, the DB domain
of EGR1 is composed of three tandem copies of C2H2-type zinc
fingers (ZF) (Green and Sarkar, 1998; Green et al., 1998; Wolfe
Importantly, the binding of the DB domain of EGR1 appears to be strongly governed by numerous van der Waals contacts in addition to an extensive network of intermolecular hydrogen bonding and ion pairing (Pavletich and Pabo, 1991). In particular, detailed examination of the atomic structure of the DB domain of EGR1 in complex with the ZRE duplex shows that an histidine residue (H382), located within the major groove of DNA, serves a key role in stabilizing the EGR1–DNA interaction via a two-pronged mechanism. Firstly, the coplanar alignment of the imidazole ring of H382 with the purine ring of G0 facilitates the formation of a hydrogen bond between the H2 atom of H382 and the N7 atom of G0. Secondly, stacking of the imidazole ring of H382 against the pyrimidine ring of T-1 promotes van der Waals contacts between the protein and the DNA.

Figure 2. Dependence of equilibrium dissociation constant (K_d) on concentrations of NaCl (top panel), KCl (middle panel), and NaAc (bottom panel) for the binding of ZRE duplex to the DB_WT domain of EGR1. Note that the red solid lines represent exponential fits to data points in the top and middle panels, whereas the one in the bottom panel denotes linear regression fit. The error bars were calculated from at least three independent measurements ± 1 standard deviation.

Salt tolerance of EGR1–DNA interaction is solely attributable to H382

To test our hypothesis that the ability of EGR1 to bind to DNA in a salt-independent manner is attributable to H382 by virtue of its ability to engage in key intermolecular hydrogen bonding and van der Waals contacts with DNA, we indeed demonstrated that the binding of EGR1 to DNA is tightly modulated by solution pH by virtue of the ability of the imidazole ring of H382 to undergo protonation–deprotonation-coupled equilibrium. Could the ability of H382 to engage in key intermolecular hydrogen bonding and van der Waals interactions of H382 with DNA also account for the favorable enthalpy that could ultimately confer upon EGR1–DNA interaction the ability to tolerate physiological concentrations of salt?
Figure 3. Effect of increasing concentrations of (a) NaCl, (b) KCl, and (c) NaAc on the change in the contributions of enthalpic ($\Delta \Delta H$) and entropic ($T \Delta \Delta S$) forces to the free energy ($\Delta \Delta G$) with respect to the corresponding contributions in the absence of salt accompanying the binding of ZRE duplex to DB_WT domain of EGR1. Note that an increasing value of $\Delta \Delta H$ is indicative of a decrease in the favorable enthalpic contribution, an increasing value of $T \Delta \Delta S$ is indicative of an increase in the favorable entropic contribution, and an increasing value of $\Delta \Delta G$ is indicative of a decrease in the overall free energy of binding. The solid lines are merely used to connect data points for clarity. The error bars were calculated from at least three independent measurements to 1 standard deviation.

Figure 4. Structural analysis of EGR1–DNA interactions. (a) ZRE duplex containing the GCGTGCCG tripartite consensus motif. The consensus nucleotides within this motif are capitalized whereas the flanking nucleotides are shown in small letters. The three subsites within the consensus motif are marked for clarity and accommodate ZFI (right site), ZFII (middle site), and ZFIII (left site) within the DB domain. The numbering of various nucleotides with respect to the central nucleotide of the middle site (which is arbitrarily assigned zero) is indicated. (b) Structural model of the DB domain of EGR1 in complex with ZRE duplex containing the GCGTGCCG consensus sequence. Note that the DB domain is composed of three tandem C2H2-type zinc fingers (ZFs), designated herein as ZFI (green), ZFII (blue), and ZFIII (magenta). Each ZF is composed of an α-helix and a double-stranded antiparallel β-sheet (β_1–β_2) that together sandwich a Zn$^{2+}$ divalent ion indicated by a sphere (yellow). The DNA backbone is shown in cyan, and the bases are omitted for clarity, except for G0 and T-1 (shown in gray) within the sense strand that engage in intermolecular contacts with the imidazole ring of H382 (colored red) located within the α-helix (uH) of ZFII. The expanded window offers a close-up view of these key intermolecular contacts, and the putative hydrogen bond between the Hiz2 atom of H382 and the N7 atom of G0 is indicated by a dashed line. The sidechain moieties of amino acid residues E354 (ZFI) and E410 (ZFIII), the structural equivalents of H382 (ZFII) within the flanking ZFs of the DB domain, are also shown and colored red for comparison.
of both the DB_H382K and DB_H382R domains to DNA exhibited strong NaCl dependence in a manner similar to the DB_H382A construct over the concentration range of 0–300 mM (Figure 5).

Given that the H382 residue located within the ZFII of the DB domain of EGR1 is replaced by a glutamate residue at the structurally equivalent positions within ZFI (E354) and ZFIII (E410) (Figure 4), we also wondered how H382E substitution might influence the binding of the DB domain to DNA. Toward this goal, we introduced and measured the effect of the binding of the DB_H382E domain to DNA. Consistent with our hypothesis that H382 compensates the effect of salt on the binding of the DB domain to DNA, our data reveal that the binding of the DB_H382E domain to DNA is highly dependent upon NaCl within the concentration window of 0–100 mM, although measurements at higher salt concentrations were not possible (Figure 5). We note that although the analysis of the binding of various mutant DB domains to DNA was only feasible up to NaCl concentrations of about 300 mM because of low enthalpic change associated with binding under high salt concentrations, our data nonetheless are strongly suggestive that H382 solely accounts for the compensatory effect of salt on EGR1–DNA interaction. Indeed, if this hypothesis is valid, we would expect the E354H and E410H substitutions to augment the compensatory effect of salt on the binding of the DB domain of EGR1 to DNA. To accomplish this goal, we introduced and measured the effect of the binding of the DB_HH domain to DNA. Interestingly, whereas salt has little or no effect on the binding of the DB_WT domain to DNA only up to about 300 mM of NaCl, the DB_HH domain binds to DNA flawlessly with little or no change in affinity even at concentrations of 500 mM (Figure 5).

It is also noteworthy that the introduction of various point mutations in place of H382 within the DB domain is concomitant with the loss of binding affinity by several folds (Table 4), implying that these mutations perturb protein structure to a varying degree. However, addition of salt further reduces this affinity in a manner akin to that observed for classical protein–DNA interactions (Figure 5). The detrimental effect of aforementioned mutations on binding thus further implicates a critical role of H382 in mediating EGR1–DNA interactions. Surprisingly, although the E354H and E410H substitutions augment the compensatory effect of salt on the binding of the DB domain to DNA (Figure 5), they are met with a slight loss of binding affinity (Table 4). This strongly argues that

Figure 5. Dependence of K_d on increasing NaCl concentration for the binding of ZRE duplex to the DB_WT, DB_H382A, DB_H382K, DB_H382R, DB_H382E, and DB_HH domains of EGR1. Note that the red solid line represents an exponential fit to data points in the top panel, whereas it denotes linear regression fits in other panels. The error bars were calculated from at least three independent measurements to 1 standard deviation.

Table 4. Thermodynamic parameters for the binding of wildtype (DB_WT) and various mutant DB domains of EGR1 to DNA at pH 7 and 25 °C

<table>
<thead>
<tr>
<th>Variants</th>
<th>K_d (nM)</th>
<th>ΔH (kcal mol$^{-1}$)</th>
<th>$T \Delta S$ (kcal mol$^{-1}$)</th>
<th>ΔG (kcal mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB_WT</td>
<td>314 ± 39</td>
<td>-19.01 ± 0.17</td>
<td>-10.13 ± 0.24</td>
<td>-8.88 ± 0.07</td>
</tr>
<tr>
<td>DB_H382A</td>
<td>1614 ± 190</td>
<td>-9.42 ± 0.47</td>
<td>-1.51 ± 0.40</td>
<td>-7.91 ± 0.07</td>
</tr>
<tr>
<td>DB_H382K</td>
<td>2257 ± 133</td>
<td>-4.59 ± 0.14</td>
<td>3.12 ± 0.17</td>
<td>-7.71 ± 0.04</td>
</tr>
<tr>
<td>DB_H382R</td>
<td>2041 ± 253</td>
<td>-6.52 ± 0.47</td>
<td>1.25 ± 0.40</td>
<td>-7.77 ± 0.07</td>
</tr>
<tr>
<td>DB_H382E</td>
<td>2298 ± 270</td>
<td>-1.60 ± 0.20</td>
<td>5.97 ± 0.27</td>
<td>-7.70 ± 0.07</td>
</tr>
<tr>
<td>DB_HH</td>
<td>530 ± 69</td>
<td>-7.26 ± 0.55</td>
<td>1.31 ± 0.62</td>
<td>-8.57 ± 0.08</td>
</tr>
</tbody>
</table>

All measurements were conducted in 50 mM sodium phosphate and 5 mM β-mercaptoethanol containing 100 mM NaCl. The binding stoichiometries to the fits agreed to within ±10%. Errors were calculated from at least three independent measurements. All errors are given to 1 standard deviation.
H382 plays a unique and nonequivalent role within the ZFII of the DB domain with respect to its structural equivalents E354 and E410 located within ZFI and ZFII, respectively. Taken together, our analysis of the effect of various mutations on the binding of the DB domain bears important consequences on the rationale design of ZFs for therapeutic intervention.

Loss of enthalpy is largely responsible for the loss of salt tolerance of the binding of EGR1 to DNA

Our data presented previously strongly suggest that the molecular origin of the ability of EGR1 to tolerate physiological concentrations of salt upon binding to DNA solely resides in the ability of H382 to engage in key intermolecular hydrogen bonding and van der Waals contacts. Consistent with this argument, the linear decrease in the affinity of binding of the DB_H382A mutant domain to DNA on NaCl concentration in the 0–300 mM range appears to largely result from the loss of enthalpic factors relative to the DB_WT domain (Figure 6a). Thus, whereas increasing NaCl concentration results in the loss of enthalpic contribution for both the DB_WT and DB_H382A domains, such loss is greater for the latter (Figure 6a). On the other hand, the entropic gain with increasing NaCl concentration is only marginally larger for the binding of the DB_H382A domain relative to DB_WT (Figure 6b). Thus, the loss in the free energy of binding of the DB_H382A domain to DNA with increasing NaCl concentration can be largely attributed to the loss of favorable enthalpy contributions (Figure 6c), whereas the DB_WT domain appears to tolerate the effect of NaCl over the same concentration window. Importantly, the decrease in the binding affinity of the DB_H382K, DB_H382R, and DB_H382E mutant domains to DNA is also attributable to the greater loss of enthalpic contributions to the free energy relative to DB_WT. Conversely, the binding of the DB_HH domain to DNA with little or no change in affinity even at concentrations of 500 mM NaCl is concomitant with significantly much less loss of favorable enthalpy relative to the DB_WT domain. Taken together, these observations are clearly indicative of the fact that the removal of imidazole moiety of H382 most likely leads to disruption of intermolecular hydrogen bonding and van der Waals contacts between EGR1 and DNA and that such disruption culminates in the greater loss of enthalpy.

CONCLUSIONS

The conventional wisdom in macromolecular biophysics has it that the polyelectrolyte effect is the major player involved in driving protein–DNA interactions (Record et al., 1976; Manning, 1978; Record et al., 1978; Record et al., 1985; Record et al., 1991; Lohman and Mascotti, 1992; Sharp et al., 1995). It would indeed be preposterous to suggest otherwise. Of thousands of biophysical studies conducted on protein–DNA interactions over the past couple of decades or so, only two cases have been hitherto documented where increasing salt concentration did not correlate with the disruption of this key intermolecular association (O’Brien et al., 1998; Deredge et al., 2010). Our study thus reported here not only adds to the growing notion that the polyelectrolyte effect is not a universal phenomenon in driving protein–DNA interactions but should also open up further dialogue and scientific investigation into the molecular basis of protein–DNA recognition. What is so remarkable about EGR1–DNA interaction is that the DB domain bears the hallmarks of a classical DNA-binding protein in that it is electrostatically polarized such that the face of the molecule that snuggles into the major groove of DNA is overall positively charged whereas the opposite face predominantly harbors a neutral surface (Pavletich and Pabo, 1991; Mikles et al., 2013). However, against this backdrop of a potentially overwhelming electrostatic force, the EGR1–DNA interaction appears to resist the effect of physiological concentrations of salt. Most significantly, we have demonstrated here that the molecular origin of such salt tolerance lies in the release of favorable enthalpy solely because of the ability of H382—located within a sea of basic residues—to engage in key intermolecular hydrogen bonding and van der Waals contacts.
We previously reported that whereas the H382 residue within ZF1 of EGR1 is fully conserved in all other EGR members (EGR2–EGR4), it is replaced by a glutamate at the structurally equivalent position within ZF1 of all members (Kruppeel-like factor (KLF) 1 to KLF17) of the closely related KLF family (Mikles et al., 2013). On the other hand, whereas the glutamate residues located at the structurally equivalent position to H382 within ZF1 (E354) and ZFII (E410) of EGR1 are fully conserved within other members of EGR family, they are replaced by a histidine residue within all KLF members. Given the importance of H382 in driving the binding of EGR1 to DNA in a salt-independent manner, it is tempting to speculate that the binding of all other members of these transcription factors in divergent cellular processes.

In conclusion, our study offers rare insights into the ability of a transcription factor to tolerate physiological concentrations of salt in binding to its cognate DNA. Given that such phenomenon has only been previously demonstrated for bacterial DNA-binding proteins (O'Brien et al., 1998; Deredeg et al., 2010), our study is even more remarkable in that it represents the first example of a eukaryotic protein–DNA interaction capable of overriding the polyelectrolyte effect.

Acknowledgements

This work was supported by funds from the National Institutes of Health (Grant# R01-GM083897) and the USVlyster Bramer Family Breast Cancer Institute to AF. CBM is a recipient of a postdoctoral fellowship from the National Institutes of Health (Award# T32-CA119929).

REFERENCES

Cacace MG, Landau EM, Ramsden JJ. 1997. The Hofmeister series: salt effects on DNA interactions within the nucleus of the living cell, where slight changes in bulk salt should be expected to have profound consequences on the ability of transcription factors to operate. In fact, bulk salt is likely to serve as an allosteric switch to regulate protein–DNA interactions within the cell nucleus. Accordingly, the apparent ability of EGR and KLF members to bypass this regulatory mechanism likely suggests a key role of these transcription factors in divergent cellular processes.

In conclusion, our study offers rare insights into the ability of a transcription factor to tolerate physiological concentrations of salt in binding to its cognate DNA. Given that such phenomenon has only been previously demonstrated for bacterial DNA-binding proteins (O'Brien et al., 1998; Deredeg et al., 2010), our study is even more remarkable in that it represents the first example of a eukaryotic protein–DNA interaction capable of overriding the polyelectrolyte effect.

Acknowledgements

This work was supported by funds from the National Institutes of Health (Grant# R01-GM083897) and the USVlyster Bramer Family Breast Cancer Institute to AF. CBM is a recipient of a postdoctoral fellowship from the National Institutes of Health (Award# T32-CA119929).

REFERENCES

Record MT, Jr, Anderson CF, Lohman TM. 1978. Thermodynamic analysis of ion effects on the binding and conformational equilibria of proteins and nucleic acids: the roles of ion association or release, screening, and ion effects on water activity. Q. Rev. Biophys. 11: 103–178.

